Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-4066044.v1

ABSTRACT

Background: Either sequential organ failure assessment (SOFA) score or chest CT severity score (CT-SS) is often used alone to evaluate the prognosis of patients with critical coronavirus disease 2019 (COVID-19), but each of them has intrinsic deficiency. Herein, we attempted to investigate the predictive value of the combination of SOFA and CT-SS for the prognosis of COVID-19. Materials and Methods: A single-center retrospective study was performed in the Second Affiliated Hospital of Zhejiang University School of Medicine from December 2022 to January 2023. Patients with critical COVID-19 pneumonia were divided into two groups of survival or non-survival of hospitalization. The data including clinical characteristics, CT-SS, SOFA score, laboratory results on admission day were collected and analyzed. In addition, the predictive value of SOFAscore, chest CT-SS, or their combination for in-hospital mortality of COVID-19 pneumonia were compared by receiver operating characteristic (ROC) curve. Results: A total of 424 patients with a mean age of 75.46 years and a major proportion of male (69.10%) were finally enrolled, and the total in-hospital mortality was 43.40% (184/424). In comparison with survival group, significant higher proportions of older age (>75 years), comorbidities including obesity, diabetes, and cerebrovascular disease, more needs of mechanical ventilation and continuous renal replacement therapy (CRRT) were observed in the non-survival group (all P﹤0.05). In addition, non-survival patients had a higher value of creatinine, procalcitonin, C-reactive protein, interleukin-6 , SOFA score , CT-SS  (all P﹤0.05) on admission day. Multivariate logistic regression analysis further showed that older age, obesity, diabetes, SOFA score, CT-SS, mechanical ventilation, and lymphocytopenia (all P﹤0.05) were independently related with in-hospital mortality. Moreover, the area under the curve (AUC) of combination of SOFA score and chest CT-SS became significant higher than their respective alone (P<0.01). Conclusion: A simple combination of SOFA scorewith chest CT-SS on admission elicits a better predictive value for in-hospital mortality of critical COVID-19 patients, which could also serve as a promising indicator for prognosis prediction of other severe lung diseases like severe pneumonia and acute lung injury.


Subject(s)
Coronavirus Infections , Lung Diseases , Pneumonia , Diabetes Mellitus , Cerebrovascular Disorders , Obesity , Acute Lung Injury , COVID-19 , Lymphopenia
2.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256877

ABSTRACT

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.


Subject(s)
COVID-19 , Sepsis
3.
Journal of Hazardous Materials ; 401:123372-123372, 2020.
Article in English | MEDLINE | ID: covidwho-662393

ABSTRACT

To investigate the deleterious ecological effects of cyanobacteria on submerged macrophytes, this study investigated the effects of different concentrations of fresh cyanobacteria (FC) and cyanobacteria decomposition solution (CDS) on an experimental group of submerged macrophytes (Vallisneria natans (Lour.) Hara and Myriophyllum verticillatum Linn.). The results showed that FC and CDS not only lead to decrease in biomass and significant changes in enzyme activity and chlorophyll content in tissue, but also affected the permeability of cell membranes. The extent of damage was in the order CDS >FC, and the comprehensive stress resistance of Vallisneria natans (2.994) was more than that of Myriophyllum verticillatum (2.895). In addition, semi-permeable membranes can reduce plant damage by FC and CDS, but cannot completely prevent it. FC and CDS mainly affected the relative distribution of microbial genera on the surface of aquatic plants (p <0.05). Furthermore, CDS caused irreversible damage to plant cells and induced programmed cell death (PCD) of plants to accelerate their decline. Therefore, FC and CDS may be one of the main reasons for the decline in submerged vegetation. This study provides a scientific basis for evaluating the harmful effects of cyanobacteria on submerged macrophytes.

SELECTION OF CITATIONS
SEARCH DETAIL